Source code for auto_prep.modeling.model_LinearRegression

from sklearn.linear_model import LinearRegression

from ..utils.abstract import Regressor
from ..utils.logging_config import setup_logger

logger = setup_logger(__name__)


[docs] class ModelLinearRegression(LinearRegression, Regressor): """ Linear regression model with added description method (to_tex()) and predefined PARAM_GRID that may be used in GridSearch. """ PARAM_GRID = { "fit_intercept": [True, False], } def __init__(self, fit_intercept=True, **kwargs): """ Initializes Linear Regression model with specified parameters. Args: fit_intercept (bool) : whether to calculate intercept for this model. Default: True. """ super().__init__(fit_intercept=fit_intercept, **kwargs)
[docs] def to_tex(self) -> dict: """ Returns a description of the model in a dictionary format. Returns: dict : a dictionary containing models name, description and hyperparameters. """ return { "name": "Linear Regression", "desc": "Linear regression models with hyperparameters.", "params": f"{self.get_params()}", }