auto_prep.modeling package
Submodules
auto_prep.modeling.handler module
- class auto_prep.modeling.handler.ModelHandler[source]
Bases:
objectClass responsible for loading and handling machine learning models and pipelines.
- static generate_shap(X_test: DataFrame, model: BaseEstimator, model_idx: int, task: str)[source]
Generates SHAP plots for a given model.
- Parameters:
X_test (pd.DataFrame) – Test data for SHAP analysis.
model (BaseEstimator) – Trained model for generating SHAP values.
model_idx (int) – Identifier for the model.
task (str) – regiression / classification
- static load_modules(package: str) List[str][source]
Loads modules from the specified package that contains models (start with model_).
- Parameters:
package (str) – The package to load modules from.
- Returns:
found module names.
- Return type:
List[str]
- load_pipelines() List[BaseEstimator] | List[str][source]
Loads pipelines from the directory specified in config.
- Returns:
loaded pipelines. List[str]: pipelines file names.
- Return type:
List[BaseEstimator]
- run(X_train: DataFrame, y_train: Series, X_valid: DataFrame, y_valid: Series, X_test: DataFrame, y_test: Series, task: str)[source]
Performs models fitting and selection.
- Parameters:
X_train (pd.DataFrame) – Training feature dataset.
y_train (pd.Series) – Training target dataset.
X_valid (pd.DataFrame) – Validation feature dataset.
y_valid (pd.Series) – Validation target dataset.
X_test (pd.DataFrame) – Test feature dataset.
y_test (pd.Series) – Test target dataset.
task (str) – regiression / classification
- static tune_model(scoring_func: callable, model_cls: BaseEstimator, best_k: int, X_train: DataFrame, y_train: Series, X_valid: DataFrame | None = None, y_valid: Series | None = None) dict | List[dict] | int[source]
Tunes a model’s hyperparameters using RandomizedSearchCV and returns the best model and related information.
- Parameters:
scoring_func (Callable) – Scoring function for evaluating models.
model_cls (BaseEstimator) – Model class to be trained.
best_k (int) – Return up to k best models params.
X_train (pd.DataFrame) – Training feature dataset.
y_train (pd.Series) – Training target dataset.
X_valid (pd.DataFrame, optional) – Validation feature dataset. Defaults to None.
y_valid (pd.Series, optional) – Validation target dataset. Defaults to None.
- Returns:
training meta info List[dict]: results int: models tested
- Return type:
dict
- auto_prep.modeling.handler.format_shape(df)
auto_prep.modeling.model_BayesianRidgeRegressor module
- class auto_prep.modeling.model_BayesianRidgeRegressor.ModelBayesianRidgeRegressor(max_iter=300, tol=0.001, alpha_1=1e-06, alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-06, **kwargs)[source]
Bases:
BayesianRidge,RegressorThis class implements a Bayesian Ridge Regressor model, which is a linear regression model with Bayesian regularization.
- PARAM_GRID
A dictionary containing the parameter grid for hyperparameter tuning.
- Type:
dict
- PARAM_GRID = {'alpha_1': [1e-06, 1e-07, 1e-08], 'alpha_2': [1e-06, 1e-07, 1e-08], 'lambda_1': [1e-06, 1e-07, 1e-08], 'lambda_2': [1e-06, 1e-07, 1e-08], 'max_iter': [300, 400, 500], 'tol': [0.001, 0.0001, 1e-05]}
- set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelBayesianRidgeRegressor
Request metadata passed to the
fitmethod.Note that this method is only relevant if
enable_metadata_routing=True(seesklearn.set_config()). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed tofitif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it tofit.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter infit.- Returns:
self – The updated object.
- Return type:
object
- set_predict_request(*, return_std: bool | None | str = '$UNCHANGED$') ModelBayesianRidgeRegressor
Request metadata passed to the
predictmethod.Note that this method is only relevant if
enable_metadata_routing=True(seesklearn.set_config()). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed topredictif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it topredict.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline. Otherwise it has no effect.- Parameters:
return_std (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
return_stdparameter inpredict.- Returns:
self – The updated object.
- Return type:
object
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelBayesianRidgeRegressor
Request metadata passed to the
scoremethod.Note that this method is only relevant if
enable_metadata_routing=True(seesklearn.set_config()). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed toscoreif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it toscore.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter inscore.- Returns:
self – The updated object.
- Return type:
object
auto_prep.modeling.model_DecisionTreeClassifier module
- class auto_prep.modeling.model_DecisionTreeClassifier.ModelDecisionTreeClassifier(criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, random_state=42, **kwargs)[source]
Bases:
DecisionTreeClassifier,ClassifierThis class extends the DecisionTreeClassifier and Classification classes to provide a decision tree classifier model with additional functionality.
- PARAM_GRID
A dictionary containing the parameter grid for hyperparameter tuning.
- Type:
dict
- PARAM_GRID = {'criterion': ['gini', 'entropy'], 'max_depth': [None, 5, 10, 15, 20], 'min_samples_leaf': [1, 2, 4], 'min_samples_split': [2, 5, 10], 'random_state': [42], 'splitter': ['best', 'random']}
- set_fit_request(*, check_input: bool | None | str = '$UNCHANGED$', sample_weight: bool | None | str = '$UNCHANGED$') ModelDecisionTreeClassifier
Request metadata passed to the
fitmethod.Note that this method is only relevant if
enable_metadata_routing=True(seesklearn.set_config()). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed tofitif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it tofit.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline. Otherwise it has no effect.- Parameters:
check_input (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
check_inputparameter infit.sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter infit.
- Returns:
self – The updated object.
- Return type:
object
- set_predict_proba_request(*, check_input: bool | None | str = '$UNCHANGED$') ModelDecisionTreeClassifier
Request metadata passed to the
predict_probamethod.Note that this method is only relevant if
enable_metadata_routing=True(seesklearn.set_config()). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed topredict_probaif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it topredict_proba.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline. Otherwise it has no effect.- Parameters:
check_input (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
check_inputparameter inpredict_proba.- Returns:
self – The updated object.
- Return type:
object
- set_predict_request(*, check_input: bool | None | str = '$UNCHANGED$') ModelDecisionTreeClassifier
Request metadata passed to the
predictmethod.Note that this method is only relevant if
enable_metadata_routing=True(seesklearn.set_config()). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed topredictif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it topredict.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline. Otherwise it has no effect.- Parameters:
check_input (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
check_inputparameter inpredict.- Returns:
self – The updated object.
- Return type:
object
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelDecisionTreeClassifier
Request metadata passed to the
scoremethod.Note that this method is only relevant if
enable_metadata_routing=True(seesklearn.set_config()). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed toscoreif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it toscore.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter inscore.- Returns:
self – The updated object.
- Return type:
object
auto_prep.modeling.model_GaussianNaiveClassifier module
- class auto_prep.modeling.model_GaussianNaiveClassifier.ModelGaussianNaiveClassifier(priors=None, var_smoothing=1e-09, **kwargs)[source]
Bases:
GaussianNB,ClassifierThis class implements a Gaussian Naive Bayes classifier, which is a probabilistic classifier based on applying Bayes’ theorem with strong (naive) independence assumptions between the features. .. attribute:: PARAM_GRID
A dictionary containing the parameter grid for hyperparameter tuning. It includes: - “priors”: List of prior probabilities of the classes. Default is [None]. - “var_smoothing”: List of float values for the portion of the largest
variance of all features that is added to variances for calculation stability.
- type:
dict
- PARAM_GRID = {'priors': [None], 'var_smoothing': [1e-09, 1e-07, 1e-05]}
- set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelGaussianNaiveClassifier
Request metadata passed to the
fitmethod.Note that this method is only relevant if
enable_metadata_routing=True(seesklearn.set_config()). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed tofitif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it tofit.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter infit.- Returns:
self – The updated object.
- Return type:
object
- set_partial_fit_request(*, classes: bool | None | str = '$UNCHANGED$', sample_weight: bool | None | str = '$UNCHANGED$') ModelGaussianNaiveClassifier
Request metadata passed to the
partial_fitmethod.Note that this method is only relevant if
enable_metadata_routing=True(seesklearn.set_config()). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed topartial_fitif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it topartial_fit.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline. Otherwise it has no effect.- Parameters:
classes (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
classesparameter inpartial_fit.sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter inpartial_fit.
- Returns:
self – The updated object.
- Return type:
object
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelGaussianNaiveClassifier
Request metadata passed to the
scoremethod.Note that this method is only relevant if
enable_metadata_routing=True(seesklearn.set_config()). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed toscoreif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it toscore.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter inscore.- Returns:
self – The updated object.
- Return type:
object
auto_prep.modeling.model_GradientBoostingRegressor module
- class auto_prep.modeling.model_GradientBoostingRegressor.ModelGradientBoostingRegressor(n_estimators=100, learning_rate=0.1, max_depth=3, min_samples_split=2, min_samples_leaf=1, subsample=1.0, random_state=42, **kwargs)[source]
Bases:
GradientBoostingRegressor,RegressorThis class implements a Gradient Boosting Regressor model with a predefined parameter grid for hyperparameter tuning. .. attribute:: PARAM_GRID
A dictionary containing the parameter grid for hyperparameter tuning.
- type:
dict
- This method initializes the Gradient Boosting Regressor model and logs the initialization.
- PARAM_GRID = {'learning_rate': [0.1, 0.05, 0.02], 'max_depth': [4, 6, 8], 'min_samples_leaf': [1, 2, 4], 'min_samples_split': [2, 5, 10], 'n_estimators': [100, 200, 300], 'random_state': [42], 'subsample': [1.0, 0.5]}
- set_fit_request(*, monitor: bool | None | str = '$UNCHANGED$', sample_weight: bool | None | str = '$UNCHANGED$') ModelGradientBoostingRegressor
Request metadata passed to the
fitmethod.Note that this method is only relevant if
enable_metadata_routing=True(seesklearn.set_config()). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed tofitif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it tofit.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline. Otherwise it has no effect.- Parameters:
monitor (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
monitorparameter infit.sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter infit.
- Returns:
self – The updated object.
- Return type:
object
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelGradientBoostingRegressor
Request metadata passed to the
scoremethod.Note that this method is only relevant if
enable_metadata_routing=True(seesklearn.set_config()). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed toscoreif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it toscore.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter inscore.- Returns:
self – The updated object.
- Return type:
object
auto_prep.modeling.model_KNeighboursClassifier module
- class auto_prep.modeling.model_KNeighboursClassifier.ModelKNeighboursClassifier(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, **kwargs)[source]
Bases:
KNeighborsClassifier,ClassifierK Neighbours Classifier model. .. attribute:: PARAM_GRID
Parameter grid for hyperparameter tuning.
- type:
dict
- PARAM_GRID = {'algorithm': ['auto', 'ball_tree', 'kd_tree', 'brute'], 'leaf_size': [30, 40, 50], 'n_neighbors': [5, 10, 15], 'p': [1, 2], 'weights': ['uniform', 'distance']}
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelKNeighboursClassifier
Request metadata passed to the
scoremethod.Note that this method is only relevant if
enable_metadata_routing=True(seesklearn.set_config()). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed toscoreif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it toscore.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter inscore.- Returns:
self – The updated object.
- Return type:
object
auto_prep.modeling.model_KNeighboursRegressor module
- class auto_prep.modeling.model_KNeighboursRegressor.ModelKNeighboursRegressor(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, **kwargs)[source]
Bases:
KNeighborsRegressor,RegressorK Neighbours Regressor model. .. attribute:: PARAM_GRID
Parameter grid for hyperparameter tuning.
- type:
dict
- PARAM_GRID = {'algorithm': ['auto', 'ball_tree', 'kd_tree', 'brute'], 'leaf_size': [30, 40, 50], 'n_neighbors': [5, 10, 15], 'p': [1, 2], 'weights': ['uniform', 'distance']}
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelKNeighboursRegressor
Request metadata passed to the
scoremethod.Note that this method is only relevant if
enable_metadata_routing=True(seesklearn.set_config()). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed toscoreif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it toscore.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter inscore.- Returns:
self – The updated object.
- Return type:
object
auto_prep.modeling.model_LinearRegression module
- class auto_prep.modeling.model_LinearRegression.ModelLinearRegression(fit_intercept=True, **kwargs)[source]
Bases:
LinearRegression,RegressorLinear regression model with added description method (to_tex()) and predefined PARAM_GRID that may be used in GridSearch.
- PARAM_GRID = {'fit_intercept': [True, False]}
- set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelLinearRegression
Request metadata passed to the
fitmethod.Note that this method is only relevant if
enable_metadata_routing=True(seesklearn.set_config()). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed tofitif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it tofit.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter infit.- Returns:
self – The updated object.
- Return type:
object
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelLinearRegression
Request metadata passed to the
scoremethod.Note that this method is only relevant if
enable_metadata_routing=True(seesklearn.set_config()). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed toscoreif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it toscore.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter inscore.- Returns:
self – The updated object.
- Return type:
object
auto_prep.modeling.model_LinearSVR module
- class auto_prep.modeling.model_LinearSVR.ModelLinearSVR(epsilon=0, C=1.0, loss='epsilon_insensitive', fit_intercept=True, **kwargs)[source]
Bases:
LinearSVR,RegressorLinear SVR model with added description method (to_tex()) and predefined PARAM_GRID that may be used in GridSearch.
- PARAM_GRID = {'C': [0.1, 1.0, 10.0, 100.0], 'epsilon': [0.0, 0.1, 0.2, 0.5, 1.0], 'fit_intercept': [True, False], 'loss': ['epsilon_insensitive', 'squared_epsilon_insensitive']}
- set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelLinearSVR
Request metadata passed to the
fitmethod.Note that this method is only relevant if
enable_metadata_routing=True(seesklearn.set_config()). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed tofitif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it tofit.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter infit.- Returns:
self – The updated object.
- Return type:
object
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelLinearSVR
Request metadata passed to the
scoremethod.Note that this method is only relevant if
enable_metadata_routing=True(seesklearn.set_config()). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed toscoreif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it toscore.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter inscore.- Returns:
self – The updated object.
- Return type:
object
auto_prep.modeling.model_LogisticRegression module
- class auto_prep.modeling.model_LogisticRegression.ModelLogisticRegression(penalty='l2', C=1.0, solver='lbfgs', l1_ratio=None, **kwargs)[source]
Bases:
LogisticRegression,ClassifierLogistic regression model with added description method (to_tex()) and predefined PARAM_GRID that may be used in GridSearch.
- PARAM_GRID = [{'C': [0.01, 0.1, 1, 10], 'penalty': ['l1'], 'solver': ['liblinear', 'saga']}, {'C': [0.01, 0.1, 1, 10], 'penalty': ['l2'], 'solver': ['lbfgs', 'liblinear', 'saga', 'newton-cg']}, {'C': [0.01, 0.1, 1, 10], 'l1_ratio': [0.5, 0.7], 'penalty': ['elasticnet'], 'solver': ['saga']}]
- set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelLogisticRegression
Request metadata passed to the
fitmethod.Note that this method is only relevant if
enable_metadata_routing=True(seesklearn.set_config()). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed tofitif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it tofit.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter infit.- Returns:
self – The updated object.
- Return type:
object
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelLogisticRegression
Request metadata passed to the
scoremethod.Note that this method is only relevant if
enable_metadata_routing=True(seesklearn.set_config()). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed toscoreif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it toscore.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter inscore.- Returns:
self – The updated object.
- Return type:
object
auto_prep.modeling.model_RandomForestRegressor module
- class auto_prep.modeling.model_RandomForestRegressor.ModelRandomForestRegressor(n_estimators=100, max_depth=None, min_samples_split=2, min_samples_leaf=1, max_features=1, bootstrap=True, random_state=42, **kwargs)[source]
Bases:
RandomForestRegressor,RegressorRandom Forest Regressor model. .. attribute:: PARAM_GRID
Parameter grid for hyperparameter tuning.
- type:
dict
- PARAM_GRID = {'bootstrap': [True, False], 'max_depth': [None, 5, 10, 15, 20], 'max_features': ['sqrt', 'log2', None], 'min_samples_leaf': [1, 2, 4], 'min_samples_split': [2, 5, 10], 'n_estimators': [100, 200, 300], 'random_state': [42]}
- set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelRandomForestRegressor
Request metadata passed to the
fitmethod.Note that this method is only relevant if
enable_metadata_routing=True(seesklearn.set_config()). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed tofitif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it tofit.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter infit.- Returns:
self – The updated object.
- Return type:
object
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelRandomForestRegressor
Request metadata passed to the
scoremethod.Note that this method is only relevant if
enable_metadata_routing=True(seesklearn.set_config()). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed toscoreif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it toscore.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter inscore.- Returns:
self – The updated object.
- Return type:
object
auto_prep.modeling.model_SVC module
- class auto_prep.modeling.model_SVC.ModelSVC(C=1.0, kernel='rbf', degree=3, gamma='scale', random_state=42, probability=True, **kwargs)[source]
Bases:
SVC,ClassifierSupport Vector Classifier model. .. attribute:: PARAM_GRID
Parameter grid for hyperparameter tuning.
- type:
dict
- PARAM_GRID = {'C': [0.1, 1, 10, 100, 1000], 'degree': [3, 4, 5], 'gamma': ['scale', 'auto'], 'kernel': ['linear', 'poly', 'rbf', 'sigmoid'], 'random_state': [42]}
- set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelSVC
Request metadata passed to the
fitmethod.Note that this method is only relevant if
enable_metadata_routing=True(seesklearn.set_config()). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed tofitif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it tofit.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter infit.- Returns:
self – The updated object.
- Return type:
object
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelSVC
Request metadata passed to the
scoremethod.Note that this method is only relevant if
enable_metadata_routing=True(seesklearn.set_config()). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed toscoreif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it toscore.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter inscore.- Returns:
self – The updated object.
- Return type:
object