auto_prep.modeling package
Submodules
auto_prep.modeling.handler module
- class auto_prep.modeling.handler.ModelHandler[source]
Bases:
object
Class responsible for loading and handling machine learning models and pipelines.
- static generate_shap(X_test: DataFrame, model: BaseEstimator, model_idx: int, task: str)[source]
Generates SHAP plots for a given model.
- Parameters:
X_test (pd.DataFrame) – Test data for SHAP analysis.
model (BaseEstimator) – Trained model for generating SHAP values.
model_idx (int) – Identifier for the model.
task (str) – regiression / classification
- static load_modules(package: str) List[str] [source]
Loads modules from the specified package that contains models (start with model_).
- Parameters:
package (str) – The package to load modules from.
- Returns:
found module names.
- Return type:
List[str]
- load_pipelines() List[BaseEstimator] | List[str] [source]
Loads pipelines from the directory specified in config.
- Returns:
loaded pipelines. List[str]: pipelines file names.
- Return type:
List[BaseEstimator]
- run(X_train: DataFrame, y_train: Series, X_valid: DataFrame, y_valid: Series, X_test: DataFrame, y_test: Series, task: str)[source]
Performs models fitting and selection.
- Parameters:
X_train (pd.DataFrame) – Training feature dataset.
y_train (pd.Series) – Training target dataset.
X_valid (pd.DataFrame) – Validation feature dataset.
y_valid (pd.Series) – Validation target dataset.
X_test (pd.DataFrame) – Test feature dataset.
y_test (pd.Series) – Test target dataset.
task (str) – regiression / classification
- static tune_model(scoring_func: callable, model_cls: BaseEstimator, best_k: int, X_train: DataFrame, y_train: Series, X_valid: DataFrame | None = None, y_valid: Series | None = None) dict | List[dict] | int [source]
Tunes a model’s hyperparameters using RandomizedSearchCV and returns the best model and related information.
- Parameters:
scoring_func (Callable) – Scoring function for evaluating models.
model_cls (BaseEstimator) – Model class to be trained.
best_k (int) – Return up to k best models params.
X_train (pd.DataFrame) – Training feature dataset.
y_train (pd.Series) – Training target dataset.
X_valid (pd.DataFrame, optional) – Validation feature dataset. Defaults to None.
y_valid (pd.Series, optional) – Validation target dataset. Defaults to None.
- Returns:
training meta info List[dict]: results int: models tested
- Return type:
dict
- auto_prep.modeling.handler.format_shape(df)
auto_prep.modeling.model_BayesianRidgeRegressor module
- class auto_prep.modeling.model_BayesianRidgeRegressor.ModelBayesianRidgeRegressor(max_iter=300, tol=0.001, alpha_1=1e-06, alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-06, **kwargs)[source]
Bases:
BayesianRidge
,Regressor
This class implements a Bayesian Ridge Regressor model, which is a linear regression model with Bayesian regularization.
- PARAM_GRID
A dictionary containing the parameter grid for hyperparameter tuning.
- Type:
dict
- PARAM_GRID = {'alpha_1': [1e-06, 1e-07, 1e-08], 'alpha_2': [1e-06, 1e-07, 1e-08], 'lambda_1': [1e-06, 1e-07, 1e-08], 'lambda_2': [1e-06, 1e-07, 1e-08], 'max_iter': [300, 400, 500], 'tol': [0.001, 0.0001, 1e-05]}
- set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelBayesianRidgeRegressor
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weight
parameter infit
.- Returns:
self – The updated object.
- Return type:
object
- set_predict_request(*, return_std: bool | None | str = '$UNCHANGED$') ModelBayesianRidgeRegressor
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
return_std (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
return_std
parameter inpredict
.- Returns:
self – The updated object.
- Return type:
object
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelBayesianRidgeRegressor
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weight
parameter inscore
.- Returns:
self – The updated object.
- Return type:
object
auto_prep.modeling.model_DecisionTreeClassifier module
- class auto_prep.modeling.model_DecisionTreeClassifier.ModelDecisionTreeClassifier(criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, random_state=42, **kwargs)[source]
Bases:
DecisionTreeClassifier
,Classifier
This class extends the DecisionTreeClassifier and Classification classes to provide a decision tree classifier model with additional functionality.
- PARAM_GRID
A dictionary containing the parameter grid for hyperparameter tuning.
- Type:
dict
- PARAM_GRID = {'criterion': ['gini', 'entropy'], 'max_depth': [None, 5, 10, 15, 20], 'min_samples_leaf': [1, 2, 4], 'min_samples_split': [2, 5, 10], 'random_state': [42], 'splitter': ['best', 'random']}
- set_fit_request(*, check_input: bool | None | str = '$UNCHANGED$', sample_weight: bool | None | str = '$UNCHANGED$') ModelDecisionTreeClassifier
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
check_input (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
check_input
parameter infit
.sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weight
parameter infit
.
- Returns:
self – The updated object.
- Return type:
object
- set_predict_proba_request(*, check_input: bool | None | str = '$UNCHANGED$') ModelDecisionTreeClassifier
Request metadata passed to the
predict_proba
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict_proba
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict_proba
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
check_input (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
check_input
parameter inpredict_proba
.- Returns:
self – The updated object.
- Return type:
object
- set_predict_request(*, check_input: bool | None | str = '$UNCHANGED$') ModelDecisionTreeClassifier
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
check_input (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
check_input
parameter inpredict
.- Returns:
self – The updated object.
- Return type:
object
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelDecisionTreeClassifier
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weight
parameter inscore
.- Returns:
self – The updated object.
- Return type:
object
auto_prep.modeling.model_GaussianNaiveClassifier module
- class auto_prep.modeling.model_GaussianNaiveClassifier.ModelGaussianNaiveClassifier(priors=None, var_smoothing=1e-09, **kwargs)[source]
Bases:
GaussianNB
,Classifier
This class implements a Gaussian Naive Bayes classifier, which is a probabilistic classifier based on applying Bayes’ theorem with strong (naive) independence assumptions between the features. .. attribute:: PARAM_GRID
A dictionary containing the parameter grid for hyperparameter tuning. It includes: - “priors”: List of prior probabilities of the classes. Default is [None]. - “var_smoothing”: List of float values for the portion of the largest
variance of all features that is added to variances for calculation stability.
- type:
dict
- PARAM_GRID = {'priors': [None], 'var_smoothing': [1e-09, 1e-07, 1e-05]}
- set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelGaussianNaiveClassifier
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weight
parameter infit
.- Returns:
self – The updated object.
- Return type:
object
- set_partial_fit_request(*, classes: bool | None | str = '$UNCHANGED$', sample_weight: bool | None | str = '$UNCHANGED$') ModelGaussianNaiveClassifier
Request metadata passed to the
partial_fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topartial_fit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topartial_fit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
classes (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
classes
parameter inpartial_fit
.sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weight
parameter inpartial_fit
.
- Returns:
self – The updated object.
- Return type:
object
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelGaussianNaiveClassifier
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weight
parameter inscore
.- Returns:
self – The updated object.
- Return type:
object
auto_prep.modeling.model_GradientBoostingRegressor module
- class auto_prep.modeling.model_GradientBoostingRegressor.ModelGradientBoostingRegressor(n_estimators=100, learning_rate=0.1, max_depth=3, min_samples_split=2, min_samples_leaf=1, subsample=1.0, random_state=42, **kwargs)[source]
Bases:
GradientBoostingRegressor
,Regressor
This class implements a Gradient Boosting Regressor model with a predefined parameter grid for hyperparameter tuning. .. attribute:: PARAM_GRID
A dictionary containing the parameter grid for hyperparameter tuning.
- type:
dict
- This method initializes the Gradient Boosting Regressor model and logs the initialization.
- PARAM_GRID = {'learning_rate': [0.1, 0.05, 0.02], 'max_depth': [4, 6, 8], 'min_samples_leaf': [1, 2, 4], 'min_samples_split': [2, 5, 10], 'n_estimators': [100, 200, 300], 'random_state': [42], 'subsample': [1.0, 0.5]}
- set_fit_request(*, monitor: bool | None | str = '$UNCHANGED$', sample_weight: bool | None | str = '$UNCHANGED$') ModelGradientBoostingRegressor
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
monitor (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
monitor
parameter infit
.sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weight
parameter infit
.
- Returns:
self – The updated object.
- Return type:
object
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelGradientBoostingRegressor
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weight
parameter inscore
.- Returns:
self – The updated object.
- Return type:
object
auto_prep.modeling.model_KNeighboursClassifier module
- class auto_prep.modeling.model_KNeighboursClassifier.ModelKNeighboursClassifier(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, **kwargs)[source]
Bases:
KNeighborsClassifier
,Classifier
K Neighbours Classifier model. .. attribute:: PARAM_GRID
Parameter grid for hyperparameter tuning.
- type:
dict
- PARAM_GRID = {'algorithm': ['auto', 'ball_tree', 'kd_tree', 'brute'], 'leaf_size': [30, 40, 50], 'n_neighbors': [5, 10, 15], 'p': [1, 2], 'weights': ['uniform', 'distance']}
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelKNeighboursClassifier
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weight
parameter inscore
.- Returns:
self – The updated object.
- Return type:
object
auto_prep.modeling.model_KNeighboursRegressor module
- class auto_prep.modeling.model_KNeighboursRegressor.ModelKNeighboursRegressor(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, **kwargs)[source]
Bases:
KNeighborsRegressor
,Regressor
K Neighbours Regressor model. .. attribute:: PARAM_GRID
Parameter grid for hyperparameter tuning.
- type:
dict
- PARAM_GRID = {'algorithm': ['auto', 'ball_tree', 'kd_tree', 'brute'], 'leaf_size': [30, 40, 50], 'n_neighbors': [5, 10, 15], 'p': [1, 2], 'weights': ['uniform', 'distance']}
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelKNeighboursRegressor
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weight
parameter inscore
.- Returns:
self – The updated object.
- Return type:
object
auto_prep.modeling.model_LinearRegression module
- class auto_prep.modeling.model_LinearRegression.ModelLinearRegression(fit_intercept=True, **kwargs)[source]
Bases:
LinearRegression
,Regressor
Linear regression model with added description method (to_tex()) and predefined PARAM_GRID that may be used in GridSearch.
- PARAM_GRID = {'fit_intercept': [True, False]}
- set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelLinearRegression
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weight
parameter infit
.- Returns:
self – The updated object.
- Return type:
object
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelLinearRegression
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weight
parameter inscore
.- Returns:
self – The updated object.
- Return type:
object
auto_prep.modeling.model_LinearSVR module
- class auto_prep.modeling.model_LinearSVR.ModelLinearSVR(epsilon=0, C=1.0, loss='epsilon_insensitive', fit_intercept=True, **kwargs)[source]
Bases:
LinearSVR
,Regressor
Linear SVR model with added description method (to_tex()) and predefined PARAM_GRID that may be used in GridSearch.
- PARAM_GRID = {'C': [0.1, 1.0, 10.0, 100.0], 'epsilon': [0.0, 0.1, 0.2, 0.5, 1.0], 'fit_intercept': [True, False], 'loss': ['epsilon_insensitive', 'squared_epsilon_insensitive']}
- set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelLinearSVR
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weight
parameter infit
.- Returns:
self – The updated object.
- Return type:
object
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelLinearSVR
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weight
parameter inscore
.- Returns:
self – The updated object.
- Return type:
object
auto_prep.modeling.model_LogisticRegression module
- class auto_prep.modeling.model_LogisticRegression.ModelLogisticRegression(penalty='l2', C=1.0, solver='lbfgs', l1_ratio=None, **kwargs)[source]
Bases:
LogisticRegression
,Classifier
Logistic regression model with added description method (to_tex()) and predefined PARAM_GRID that may be used in GridSearch.
- PARAM_GRID = [{'C': [0.01, 0.1, 1, 10], 'penalty': ['l1'], 'solver': ['liblinear', 'saga']}, {'C': [0.01, 0.1, 1, 10], 'penalty': ['l2'], 'solver': ['lbfgs', 'liblinear', 'saga', 'newton-cg']}, {'C': [0.01, 0.1, 1, 10], 'l1_ratio': [0.5, 0.7], 'penalty': ['elasticnet'], 'solver': ['saga']}]
- set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelLogisticRegression
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weight
parameter infit
.- Returns:
self – The updated object.
- Return type:
object
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelLogisticRegression
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weight
parameter inscore
.- Returns:
self – The updated object.
- Return type:
object
auto_prep.modeling.model_RandomForestRegressor module
- class auto_prep.modeling.model_RandomForestRegressor.ModelRandomForestRegressor(n_estimators=100, max_depth=None, min_samples_split=2, min_samples_leaf=1, max_features=1, bootstrap=True, random_state=42, **kwargs)[source]
Bases:
RandomForestRegressor
,Regressor
Random Forest Regressor model. .. attribute:: PARAM_GRID
Parameter grid for hyperparameter tuning.
- type:
dict
- PARAM_GRID = {'bootstrap': [True, False], 'max_depth': [None, 5, 10, 15, 20], 'max_features': ['sqrt', 'log2', None], 'min_samples_leaf': [1, 2, 4], 'min_samples_split': [2, 5, 10], 'n_estimators': [100, 200, 300], 'random_state': [42]}
- set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelRandomForestRegressor
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weight
parameter infit
.- Returns:
self – The updated object.
- Return type:
object
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelRandomForestRegressor
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weight
parameter inscore
.- Returns:
self – The updated object.
- Return type:
object
auto_prep.modeling.model_SVC module
- class auto_prep.modeling.model_SVC.ModelSVC(C=1.0, kernel='rbf', degree=3, gamma='scale', random_state=42, probability=True, **kwargs)[source]
Bases:
SVC
,Classifier
Support Vector Classifier model. .. attribute:: PARAM_GRID
Parameter grid for hyperparameter tuning.
- type:
dict
- PARAM_GRID = {'C': [0.1, 1, 10, 100, 1000], 'degree': [3, 4, 5], 'gamma': ['scale', 'auto'], 'kernel': ['linear', 'poly', 'rbf', 'sigmoid'], 'random_state': [42]}
- set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelSVC
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weight
parameter infit
.- Returns:
self – The updated object.
- Return type:
object
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ModelSVC
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weight
parameter inscore
.- Returns:
self – The updated object.
- Return type:
object