Source code for auto_prep.modeling.model_LinearSVR

from sklearn.svm import LinearSVR

from ..utils.abstract import Regressor
from ..utils.logging_config import setup_logger

logger = setup_logger(__name__)


[docs] class ModelLinearSVR(LinearSVR, Regressor): """ Linear SVR model with added description method (to_tex()) and predefined PARAM_GRID that may be used in GridSearch. """ PARAM_GRID = { "epsilon": [0.0, 0.1, 0.2, 0.5, 1.0], "C": [0.1, 1.0, 10.0, 100.0], "loss": ["epsilon_insensitive", "squared_epsilon_insensitive"], "fit_intercept": [True, False], } def __init__( self, epsilon=0, C=1.0, loss="epsilon_insensitive", fit_intercept=True, **kwargs ): """ Initializes Linear SVR model with specified parameters. Args: epsilon (float) : Epsilon parameter in the epsilon-insensitive loss function. Default:0.0 C (float) : Regularization parameter.Default: 1.0. loss (str) : Loss function to be used. Default: 'epsilon_insensitive'. fit_intercept (bool) : whether to calculate intercept for this model. Default: True. """ super().__init__( epsilon=epsilon, C=C, loss=loss, fit_intercept=fit_intercept, **kwargs )
[docs] def to_tex(self) -> dict: """ Returns a description of the model in a dictionary format. Returns: dict : a dictionary containing models name, description and hyperparameters. """ return { "name": "Linear SVR", "desc": "Linear SVR models with hyperparameters.", "params": f"{self.get_params()}", }