Source code for auto_prep.modeling.model_SVC

from sklearn.svm import SVC

from ..utils.abstract import Classifier
from ..utils.logging_config import setup_logger

logger = setup_logger(__name__)


[docs] class ModelSVC(SVC, Classifier): """ Support Vector Classifier model. Attributes: PARAM_GRID (dict): Parameter grid for hyperparameter tuning. Methods: __init__(): Initializes the Support Vector Classifier model. to_tex() -> dict: Returns a short description in the form of a dictionary. """ PARAM_GRID = { "C": [0.1, 1, 10, 100, 1000], "kernel": ["linear", "poly", "rbf", "sigmoid"], "degree": [3, 4, 5], "gamma": ["scale", "auto"], "random_state": [42], }
[docs] def __init__( self, C=1.0, kernel="rbf", degree=3, gamma="scale", random_state=42, probability=True, **kwargs, ): """ Initializes the Support Vector Classifier model. Args: C (float, optional): Regularization parameter. Defaults to 1.0. kernel (str, optional): Specifies the kernel type to be used in the algorithm. Defaults to "rbf". degree (int, optional): Degree of the polynomial kernel function. Defaults to 3. gamma (str, optional): Kernel coefficient. Defaults to "scale". random_state (int, optional): Seed for random number generator. Defaults to 42. **kwargs: Additional keyword arguments. """ super().__init__( C=C, kernel=kernel, degree=degree, gamma=gamma, random_state=random_state, probability=probability, **kwargs, )
[docs] def to_tex(self) -> dict: """ Returns a short description in form of dictionary. Returns: dict: A dictionary containing the name and description of the model. """ return { "name": "SVC", "desc": "Support Vector Classifier model.", "params": f"{self.get_params()}", }